|
:''This article is about the use of adaptive meshing in numerical analysis. See Subdivision surface for the use of adaptive techniques in Computer Graphics modelling.'' In numerical analysis, adaptive mesh refinement, or AMR, is a method of adapting the accuracy of a solution within certain sensitive or turbulent regions of simulation, dynamically and during the time the solution is being calculated. When solutions are calculated numerically, they are often limited to pre-determined quantified grids as in the Cartesian plane which constitute the computational grid, or 'mesh'. Many problems in numerical analysis, however, do not require a uniform precision in the numerical grids used for graph plotting or computational simulation, and would be better suited if specific areas of graphs which needed precision could be refined in quantification only in the regions requiring the added precision. Adaptive mesh refinement provides such a dynamic programming environment for adapting the precision of the numerical computation based on the requirements of a computation problem in specific areas of multi-dimensional graphs which need precision while leaving the other regions of the multi-dimensional graphs at lower levels of precision and resolution. This dynamic technique of adapting computation precision to specific requirements has been accredited to Marsha Berger, Joseph Oliger, and Phillip Colella who developed an algorithm for dynamic gridding called ''local adaptive mesh refinement''. The use of AMR has since then proved of broad use and has been used in studying turbulence problems in hydrodynamics as well as in the study of large scale structures in astrophysics as in the Bolshoi Cosmological Simulation. ==Development of adaptive mesh refinement== In a series of papers, Marsha Berger, Joseph Oliger, and Phillip Colella developed an algorithm for dynamic gridding called ''local adaptive mesh refinement''. The algorithm begins with the entire computational domain covered with a coarsely resolved base-level regular Cartesian grid. As the calculation progresses, individual grid cells are tagged for refinement, using a criterion that can either be user-supplied (for example mass per cell remains constant, hence higher density regions are more highly resolved) or based on Richardson extrapolation. All tagged cells are then refined, meaning that a finer grid is overlaid on the coarse one. After refinement, individual grid patches on a single fixed level of refinement are passed off to an integrator which advances those cells in time. Finally, a correction procedure is implemented to correct the transfer along coarse-fine grid interfaces, to ensure that the amount of any conserved quantity leaving one cell exactly balances the amount entering the bordering cell. If at some point the level of refinement in a cell is greater than required, the high resolution grid may be removed and replaced with a coarser grid. This allows the user to solve problems that are completely intractable on a uniform grid; for example, astrophysicists have used AMR to model a collapsing giant molecular cloud core down to an effective resolution of 131,072 cells per initial cloud radius, corresponding to a resolution of 1015 cells on a uniform grid. Advanced mesh refinement has been introduced via functionals. Functionals allow the ability to generate grids and provide mesh adaptation. Some advanced functionals include the Winslow and modified Liao functionals. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「adaptive mesh refinement」の詳細全文を読む スポンサード リンク
|